

Welcome to joern’s documentation!

Joern is a platform for robust analysis of C/C++ code developed by
Fabian Yamaguchi [https://www.tu-braunschweig.de/sec/team/fabs] and
Alwin Maier [https://www.tu-braunschweig.de/sec/team/alwin] at the
Institute of Systems Security [https://www.tu-braunschweig.de/sec]
of the Technische Universitaet Braunschweig. It is part of the octopus
project for graph-based program analysis tools. Joern generates code
property graphs, a novel graph representation that exposes the code’s
syntax, control-flow, data-flow and type information in a joint data
structure. Code property graphs are stored in an OrientDB graph
database. This allows code to be mined using search queries formulated
in the graph traversal language Gremlin. In addition, long-running
analysis tasks can be implemented as plugins for the platform.

	Fuzzy Parsing. Joern employs a fuzzy parser. This allows code to
be imported even if a working build environment cannot be supplied.

	Code Property Graphs. Joern creates code property graphs from
the fuzzy parser output and makes and stores them in a Neo4J graph
database. For background information on code property graphs, we
strongly encourage you to read our paper on the topic [http://user.informatik.uni-goettingen.de/~fyamagu/pdfs/2014-oakland.pdf].

	Extensible Query Language. Based on the graph traversal language
Gremlin, Joern offers an extensible query language based on
user-defined Gremlin steps that encode common traversals in the code
property graph. These can be combined to create search queries easily.

This is joern’s official documentation. It covers its installation and
configuration, discusses how code can be imported and retrieved from
the database and gives an overview of the database contents.

Contents:

	Installation
	System Requirements and Dependencies

	Testing the server

	Testing client scripts

	Parsing and Importing Code
	Importing code

	Parsing code without importing

	Accessing Code via Python
	Basic Usage

	Chunking Traversals

	Database Overview
	Code Property Graphs

	Global Code Structure

	Querying the Database
	Gremlin Basics

	Start Node Selection

	Traversing Syntax Trees

	Syntax-Only Descriptions

	Traversing the Symbol Graph

	Taint-Style Descriptions

	Joern-tools
	joern-slice

	joern-apiembedder

	joern-knn

	joern-plot-proggraph

	Development
	Accessing the GIT Repository

	Build system and IDEs

	Tutorials
	Code Analysis with joern-tools (Work in progress)

	Finding Similar Functions with joern-tools

	Articles

Installation

System Requirements and Dependencies

Joern is a Java Application and should work on systems offering a Java
virtual machine, e.g., Microsoft Windows, Mac OS X or GNU/Linux. We
have tested Joern on Debian Jessie, where OpenJDK-8 and Gradle 2 have
been installed from jessie backports. If you plan to work with large
code bases such as the Linux Kernel, you should have at least 30GB of
free disk space to store the database and 8GB of RAM to experience
acceptable performance. In addition, the following software should be
installed:

	A Java Virtual Machine 1.8. Joern is written in Java 8 and does
not build with Java 6 or 7. It has been tested with OpenJDK-8 but
should also work fine with Oracle’s JVM.

	Python 3. Joern implements a client/server architecture where
client scripts are written in Python 3. Please note that these
scripts are not compatible with Python2.

	Python3-setuptools and python3-dev. Client scripts are installed
using setuptools. Moreover, some of the python libraries client
tools depend on are written in C and require header files from
python3-dev to be present.

	Graphviz-dev. Plotting tools require Graphviz and its
development files to be installed.

	Gradle 2.x. Joern uses the gradle build tool, and some features
specific to Gradle 2.0 and above.

If you are on a Debian-based system, try the following to download the
necessary dependencies:

sudo apt-get install openjdk-8-jdk gradle python3 python3-setuptools python3-dev graphviz graphviz-dev

Please note, however, that Debian stable (¨Jessie¨) currently does not
include openjdk8 nor gradle 2 by default, so for Joern to work on
Debian stable, please make use of Debian backports.

The following sections offer a step-by-step guide to the installation
of Joern, including all of its dependencies.

Building joern

Please make sure Gradle 2.x is installed. Then clone the repository
and invoke the build script as follows. The build script will
automatically download and install dependencies.

git clone https://github.com/octopus-platform/joern
cd joern
./build.sh

Testing the server

In the joern root directory, invoke the script

./joern-server.sh

to start the server.

Testing client scripts

Client scripts are installed into the user script directory, which is
typically ~/.local/bin. Please make sure this directory is in your
path, e.g., by adding the line

export PATH="$PATH:~/.local/bin"

to your ~/.bashrc, and restarting the shell. You can execute the
script

joern-import

without parameters to verify that scripts are installed correctly.

Parsing and Importing Code

Importing code

Once joern has been installed, you can start the server and begin to
import code into the database by executing joern-import. In one
terminal, execute the joern server:

cd $JOERN
./joern-server

where $JOERN is the joern root directory. In a second terminal,
import the code as follows

`cd $JOERN`
`tar -cvf testCode.tar.gz testCode`
`joern-import testCode.tar.gz`

This will upload the tarball to the server, unpack it, parse the code
and create a new project and corresponding graph database. The project
name corresponds to the name of the tarball.

Parsing code without importing

In addition to offering a tool to automatically parse and import code
into a graph database (joern-import), joern provides a tool to parse
code and store its intermediate graph representation in a text
file. The fuzzy parser can thus be used without the graph database
backend, e.g., to provide input for other standalone code analysis
tools.

To parse source code in the directory $codeDir, simply invoke
joern-parse as follows.

./joern-parse $codeDir

This will create a directory named parsed, which contains two files
for each source file: a node file (nodes.csv) and an edge file
(edges.csv).

Accessing Code via Python

Once code has been imported into the platform it can be accessed via
the joern shell josh, a Java plugin API, and a python scripting
API. In this section, we explain how the Python scripting API can be
accessed.

General Note: It is highly recommended to test your installation on a
small code base first. The same is true for early attempts of creating
search queries, as erroneous queries will often run for a very long
time on large code bases, making a trial-and-error approach
unfeasible.

Basic Usage

Joern currently provides a single python class,`DBInterface`, that
allows to connect to the database server and run queries. The
following is a simple sample script that employs this interface to
select a project, connect to the server and run a Gremlin query.

#!/usr/bin/env python3

from octopus.server.DBInterface import DBInterface

projectName = 'testCode.tar.gz'
query = "g.V.has('type', 'Function').code"

db = DBInterface()
db.connectToDatabase(projectName)

result = db.runGremlinQuery(query)
for x in result: print(x)

Chunking Traversals

Note: It is not clear whether this optimization is still necessary
now that the code has been ported to Tinkerpop3.

Running the same traversal on a large set of start nodes often leads
to unacceptable performance as all nodes and edges touched by the
traversal are kept in server memory before returning results. For
example, the query:

g.V.has('type', 'FunctionDef').astNodes().id

which retrieves all astNodes that are part of functions, can already
completely exhaust memory.

If traversals are independent, the query can be chunked to gain high
performance. The following example code shows how this works:

#!/usr/bin/env python3

from octopus.server.DBInterface import DBInterface

projectName = 'testCode.tar.gz'
query = "g.V.has('type', 'FunctionDef').id"

db = DBInterface()
db.connectToDatabase(projectName)

ids = db.runGremlinQuery(query)

CHUNK_SIZE = 256
for chunk in db.chunks(ids, CHUNK_SIZE):
 query = """ idListToNodes(%s).astNodes().id """ % (chunk)
 for r in db.runGremlinQuery(query):
 print(r)

This will execute the query in batches of 256 start nodes each.

Database Overview

In this section, we give an overview of the database layout created by
Joern, i.e., the nodes, properties and edges that make up the code
property graph. The code property graph created by Joern matches that
of the code property graph as described in the paper and merely
introduces some additional nodes and edges that have turned out to be
convenient in practice.

Code Property Graphs

For each function of the code base, the database stores a code
property graph consisting of the following nodes.

Function nodes (type: Function). A node for each function
(i.e. procedure) is created. The function-node itself only holds the
function name and signature, however, it can be used to obtain the
respective Abstract Syntax Tree and Control Flow Graph of the
function.

Abstract Syntax Tree Nodes (type:various). Abstract syntax trees
represent the syntactical structure of the code. They are the
representation of choice when language constructs such as function
calls, assignments or cast-expressions need to be located. Moreover,
this hierarchical representation exposes how language constructs are
composed to form larger constructs. For example, a statement may
consist of an assignment expression, which itself consists of a left-
and right value where the right value may contain a multiplicative
expression (see Wikepedia: Abstract Syntax Tree [http://en.wikipedia.org/wiki/Abstract_syntax_tree] for more
information). Abstract syntax tree nodes are connected to their child
nodes with IS_AST_PARENT_OF edges. Moreover, the corresponding
function node is connected to the AST root node by a
IS_FUNCTION_OF_AST edge.

Statement Nodes (type:various). This is a sub-set of the Abstract
Syntax Tree Nodes. Statement nodes are marked using the property
isCFGNode with value true. Statement nodes are connected to
other statement nodes via FLOWS_TO and REACHES edges to
indicate control and data flow respectively.

Symbol nodes (type:Symbol). Data flow analysis is always
performed with respect to a variable. Since our fuzzy parser needs
to work even if declarations contained in header-files are missing,
we will often encounter the situation where a symbol is used,
which has not previously been declared. We approach this problem by
creating symbol nodes for each identifier we encounter regardless
of whether a declaration for this symbol is known or not. We also
introduce symbols for postfix expressions such as a->b to allow us
to track the use of fields of structures. Symbol nodes are connected
to all statement nodes using the symbol by USE-edges and to all
statement nodes assigning to the symbol (i.e., defining the symbol})
by DEF-edges.

Code property graphs of individual functions are linked in various
ways to allow transition from one function to another as discussed in
the next section.

Global Code Structure

In addition, to the nodes created for functions, the source file
hierarchy, as well as global type and variable declarations are
represented as follows.

File and Directory Nodes (type:File/Directory). The
directory hierarchy is exposed by creating a node for each file and
directory and connecting these nodes using IS_PARENT_DIR_OF and
IS_FILE_OF edges. This source tree allows code to
be located by its location in the filesystem directory hierarchy,
for example, this allows you to limit your analysis to functions
contained in a specified sub-directory.

Struct/Class declaration nodes (type: Class). A
Class-node is created for each structure/class identified and
connected to file-nodes by IS_FILE_OF edges. The members
of the class, i.e., attribute and method declarations are
connected to class-nodes by IS_CLASS_OF edges.

Variable declaration nodes (type: DeclStmt). Finally, declarations
of global variables are saved in declaration statement nodes and
connected to the source file they are contained in using
IS_FILE_OF edges.

Querying the Database

This chapter discusses how the database contents generated by Joern
can be queried to locate interesting code. We begin by reviewing the
basics of the graph traversal language Gremlin and proceed to discuss
how to select start nodes. The remainder of this chapter deals with
code retrieval based on syntax, taint-style queries and finally,
traversals in the function symbol graph.

Gremlin Basics

In this section, we will give a brief overview of the most basic
functionality offered by the graph traversal language Gremlin
developed by Marko A. Rodriguez. For detailed documentation of
language features, please refer to
http://tinkerpop.apache.org/docs/3.0.1-incubating/ .

Gremlin is a language designed to describe walks in property graphs. A
property graph is simply a graph where key-value pairs can be attached
to nodes and edges. (From a programmatic point of view, you can simply
think of it as a graph that has hash tables attached to nodes and
edges.) In addition, each edge has a type, and that’s all you need to
know about property graphs for now.

Graph traversals proceed in two steps to uncover to search a database
for sub-graphs of interest:

1. Start node selection. All traversals begin by selecting a set of
nodes from the database that serve as starting points for walks in the
graph.

2. Walking the graph. Starting at the nodes selected in the
previous step, the traversal walks along the graph edges to reach
adjacent nodes according to properties and types of nodes and
edges. The final goal of the traversal is to determine all nodes that
can be reached by the traversal. You can think of a graph traversal as
a sub-graph description that must be fulfilled in order for a node to
be returned.

The simplest way to select start nodes is to perform a lookup based on
the unique node key.

// Lookup node with given key
g.V.has('_key', key)

Walking the graph can now be achieved by attaching so called
Gremlin steps to the start node. Each of these steps processes
all nodes returned by the previous step, similar to the way Unix
pipelines connect shell programs. While learning Gremlin, it can thus
be a good idea to think of the dot-operator as an alias for the unix
pipe operator |. The following is a list of examples.

// Traverse to nodes connected to start node by outgoing edges
g.V.has('_key', key).out()

// Traverse to nodes two hops away.
g.V.has('_key', key).out().out()

// Traverse to nodes connected to start node by incoming edges
g.V.has('_key', key).in()

// All nodes connected by outgoing AST edges (filtering based
// on edge types)
g.V.has('_key', key).out(AST_EDGE)

// Filtering based on properties:
g.V.has('_key', key).out().has('type', typeOfInterest)

// Filtering based on edge properties
g.V.has('_key', key).outE(AST_EDGE).has(propKey, propValue).inV()

Start Node Selection

In practice, the ids or keys of interesting start nodes are rarely
known. Instead, start nodes are selected based on node properties, for
example, one may want to select all calls to function memcpy as
start nodes. For example, to retrieve all AST nodes representing
callees with a name containing the substring cpy, one may issue the
following query:

g.V.has('type', 'Callee').has('code', textRegex('.*cpy.*')).code

This is quite lengthly. Fortunately, once you identify a common
operation, you can create a custom step to perform this operation in
the future. We have collected common and generic steps of this type in
the query library joern-lang, which you find in
projects/joern-lang. In particular, we have defined the step
getCallsToRegex in lookup.groovy, so the previous query can also
be written as:

getCallsToRegex("*cpy*")

Please do not hesitate to contribute short-hands for common lookup
operations to include in lookup.groovy.

Traversing Syntax Trees

In the previous section, we outlined how nodes can be selected based
on their properties. As outline in Section Gremlin Basics, these
selected nodes can now be used as starting points for walks in the
property graph.

As an example, consider the task of finding all multiplications in
first arguments of calls to the function malloc. To solve this
problem, we can first determine all call expressions to malloc
and then traverse from the call to its first argument in the syntax
tree. We then determine all multiplicative expressions that are child
nodes of the first argument.

In principle, all of these tasks could be solved using the elementary
Gremlin traversals presented in Section Gremlin Basics. However,
traversals can be greatly simplified by introducing the following
user-defined gremlin-steps (see joernsteps/ast.py).

// Traverse to parent nodes in the AST
parents()

// Traverse to child nodes in the AST
children()

// Traverse to i'th children in the AST
ithChildren()

// Traverse to enclosing statement node
statements()

// Traverse to all nodes of the AST
// rooted at the input node
astNodes()

Additionally, calls.groovy introduces user-defined
steps for traversing calls, and in particular the step
ithArguments that traverses to i’th arguments of a given a call
node. Using these steps, the exemplary traversal for multiplicative
expressions inside first arguments to malloc simply becomes:

getCallsTo('malloc').ithArguments('0')
.astNodes()
.hasRegex(NODE_TYPE, '.*Mul.*')

Syntax-Only Descriptions

The file composition.groovy offers a number of
elementary functions to combine other traversals and lookup
functions. These composition functions allow arbitrary syntax-only
descriptions to be constructed (see Modeling and Discovering
Vulnerabilities with Code Property Graphs [http://user.informatik.uni-goettingen.de/~fyamagu/pdfs/2014-oakland.pdf]
). For example, to select all functions that contain a call to foo
AND a call to bar, lookup functions can simply be chained, e.g.,

getCallsTo('foo').getCallsTo('bar')

returns functions calling both foo and bar. Similarly,
functions calling foo OR bar can be selected as follows:

OR(getCallsTo('foo'), getCallsTo('bar'))

Finally, the not-traversal allows all nodes to be selected
that do NOT match a traversal. For example, to select all functions
calling foo but not bar, use the following traversal:

getCallsTo('foo').not{ getCallsTo('bar') }

Traversing the Symbol Graph

As outlined in Section Database Overview, the symbols used and
defined by statements are made explicit in the graph database by
adding symbol nodes to functions (see Appendix D of Modeling and Discovering
Vulnerabilities with Code Property Graphs [http://user.informatik.uni-goettingen.de/~fyamagu/pdfs/2014-oakland.pdf]). We
provide utility traversals to make use of this in order to determine
symbols defining variables, and thus simple access to types used by
statements and expressions. In particular, the file
symbolGraph.groovy contains the following steps:

// traverse from statement to the symbols it uses
uses()

// traverse from statement to the symbols it defines
defines()

// traverse from statement to the definitions
// that it is affected by (assignments and
// declarations)
definitions()

As an example, consider the task of finding all third arguments to
memcpy that are defined as parameters of a function. This can be achieved using the traversal

getArguments('memcpy', '2').definitions()
.filter{it.type == TYPE_PARAMETER}

where getArguments is a lookup-function defined in
lookup.py.

As a second example, we can traverse to all functions that use a
symbol named len in a third argument to memcpy that is not
used by any condition in the function, and hence, may not be checked.

getArguments('memcpy', '2').uses()
.filter{it.code == 'len'}
.filter{
 it.in('USES')
 .filter{it.type == 'Condition'}.toList() == []
}

This example also shows that traversals can be performed inside
filter-expressions and that at any point, a list of nodes that the
traversal reaches can be obtained using the function toList
defined on all Gremlin steps.

Taint-Style Descriptions

The last example already gave a taste of the power you get when you
can actually track where identifiers are used and defined. However,
using only the augmented function symbol graph, you cannot be sure the
definitions made by one statement actually reach another
statement. To ensure this, the classical reaching definitions
problem needs to be solved. In addition, you cannot track whether
variables are sanitized on the way from a definition to a statement.

Fortunately, joern allows you to solve both problems using the
traversal unsanitized. As an example, consider the case where
you want to find all functions where a third argument to memcpy
is named len and is passed as a parameter to the function and a
control flow path exists satisfying the following two conditions:

	The variable len is not re-defined on the way.

	The variable is not used inside a relational or equality expression
on the way, i.e., its numerical value is not ``checked’’ against
some other variable.

You can use the following traversal to achieve this:

getArguments('memcpy', '2')
.sideEffect{ paramName = '.*len.*' }
.unsanitized({ it, s -> it.isCheck(paramName) })
.match{ it.type == "Parameter" && it.code.matches(paramName) }.code

where isCheck is a traversal defined in misc.groovy
to check if a symbol occurs inside an equality or relational
expression and match looks for nodes matches the closure passed
to it in the given syntax tree.

Note, that in the above example, we are using a regular expression to
determine arguments containing the sub-string len and that one may
want to be a little more exact here. Also, we use the Gremlin step
sideEffect to save the regular expression in a variable, simply so
that we do not have to re-type the regular expression over and over.

Joern-tools

	joern-slice
	SYNOPSIS

	DESCRIPTION

	joern-apiembedder
	SYNOPSIS

	DESCRIPTION

	joern-knn
	SYNOPSIS

	DESCRIPTION

	OPTIONS

	joern-plot-proggraph
	SYNOPSIS

	DESCRIPTION

	OPTIONS

	PLOT CONFIGURATION

joern-slice

SYNOPSIS

joern-slice [options]

DESCRIPTION

Creates program slices for all nodes passed to the program via
standard input or a supplied file. Input is expected to be a list of
node ids separated by newlines. Both forward and backward slices can
be calculated. For each node, the tool generates a line of output of
the following format:

label TAB NodeId_1 ... NodeId_m TAB EdgeId_1 EdgeId_n

where label is the id of the reference node, NodeId_1 ... NodeId_m is
the list of nodes of the slice and EdgeId_1 EdgeId_n is the list
of edges.

Forward Slices

The exact behavior depends on the node type:

	Statements and Conditions: For statement and condition nodes
(i.e., nodes where isCFGNode``is `True), the slice is calculated
for all symbols defined by the statement.

	Arguments: The slice is calculated for all symbols defined by the

argument.

	Callee: The slice is calculated for all symbols occurring on the

left hand side of the assignment (return values).

Backward Slices

The exact behavior depends on the node type:

	Statements, Conditions and Callees: For statement and condition nodes
(i.e., nodes where isCFGNode``is `True), the slice is calculated
for all symbols used by the statement.

	Arguments. The slice is calculated for all symbols used inside the

argument.

joern-apiembedder

SYNOPSIS

joern-apiembedder [options]

joern-stream-apiembedder [options]

DESCRIPTION

embedder.py creates an embedding of functions based on the API symbols
they employ as well as a corresponding distance matrix. These
embeddings are used by knn.py to identify similar functions but may
also serve as a basis for other tools that require a vectorial
representation of code.

-d –dirname <dirname>

Output directory of the embedding. By default, output will be written
to the directory ‘embedding’.

Note: Please use joern-stream-apiembedder in new code,
joern-apiembedder is only kept around because it is still being
used by legacy code.

joern-knn

SYNOPSIS

joern-knn [options]

DESCRIPTION

knn.py is a tool to identify similar functions/program slices. It does
not deal with the extraction of functions from code nor their
characterization (see embedder.py), however, given a representation of
each function/program-slice by a set of strings, it allows similar
functions to be identified.

OPTIONS

-l –limit <file>

Limit possible neighbours to those specified in the provided
file. The file is expected to contain ids of possible neighbors
separated by newlines.

-d –dirname <dirname>

The name of the directory containing the embedding, as for example,
created by apiEmbed.py. In summary, the directory must contain the
following files.

/TOC

A line containing labels for each data point where the i’th line
contains the label for the i’th data point.

/data/$i

The i’th data point where $i is an ordinal. Lines of the file
correspond to elementary features. For example, if the function is
represented by API symbols and it contains the symbol ‘int’ twice, the
corresponding file will be contain the lines:

int
int

Write-access to this directory is required as knn.py will cache
distance matrices in this directory.

joern-plot-proggraph

SYNOPSIS

joern-plot-proggraph [-h] [-f FILE] [-o OUT] [-ast] [-cfg]
[-dfg] [-ddg] [-cdg] [-dom] [-all] [-P] [-c PLOT_CONFIG]
project

DESCRIPTION

joern-plot-proggraph lets you plot various program graphs, but restricted to one plot per function.
Retrieves a graph representation of a function with the given id. The default output format is graphviz’s ‘dot’.

OPTIONS

positional arguments:

project, the name of the Joern project.

optional arguments

	
-h, --help
	show this help message and exit

	
-f FILE, --file FILE

	 	read input from the provided file

	
-o OUT, --out OUT

	 	write output to provided file

	
-ast, --show-ast

	 	Show AST in CFG nodes.

	
-cfg, --show-control-flow

	 	Show control flow.

	
-dfg, --show-data-flow

	 	Show data flow.

	
-ddg, --show-data-dependences

	 	Show data dependences.

	
-cdg, --show-control-dependences

	 	Show control dependences.

	
-dom, --show-dominance-edges

	 	Show dominance edges.

	
-all, --show-all

	 	Show all edge types

	
-P, --id-property

	 	use functionId property value to identify function

	
-c PLOT_CONFIG, --plot-config PLOT_CONFIG

	 	use plot configuration from file

PLOT CONFIGURATION

The default plot configuration can be found in the directory scripts/data/plotconfig.cfg. The config consists of lines of the following format:

element_type . rule_type = pattern : [+] { [& | -] property [, ...] | param [, ...] }

	element_type:

	graph element, can be node or edge.

	rule_type:

	display to tell which properties are shown in the graph, layout to determine graphviz layout options.

	pattern:

	
	* :

	matches any element

	prop . val :

	matches if the property prop has value val. If value is * then any value of the field results in a match.

if the property or parameter list starts with a +, the result will be added to the result of previous matching rules. If + is omitted, the current result will be replaced.

fields can start with &, in which case the property label will be displayed.
fields can start with -, in which case the propery will be removed from the current results.

Lines that start with optional whitespace followed by # are comments and not processed.

Example

comment lines are possible
for all nodes, show childNum, id, type and code properties, without property keys
node.display=*:childNum,id,type,code
if we wanted property keys, use
node.display=*:&childNum,&id,&type,&code
node.layout=*:shape=rectangle,style=filled,fillcolor=white
node.layout=isCFGNode.True:+fillcolor=lightcyan
for CFGEntryNode and CFGExitNode, do not show childNum and type, but keep the rest
node.display=type.CFGEntryNode:+-childNum,-type
node.display=type.CFGExitNode:+-childNum,-type
keep the layout parameters from earlier matches (+), change fillcolor and add fontcolor
node.layout=type.CFGEntryNode:+fillcolor=slategray,fontcolor=white
node.layout=type.CFGExitNode:+fillcolor=black,fontcolor=white
node.layout=type.Symbol:+shape=ellipse,fillcolor=wheat
this overrides the display options for Symbol nodes
node.display=type.Symbol:code
edge.display=*:label
edge.display=label.IS_AST_PARENT:
edge.layout=label.IS_AST_PARENT:color=gray
this clears all display properties for FLOWS_TO edges
edge.display=label.FLOWS_TO:
edge.layout=label.FLOWS_TO:color=black
edge.layout=label.USE:color=lightpink,fontcolor=lightpink
edge.layout=label.DEF:color=deeppink,fontcolor=deeppink
edge.layout=label.DOM:color=navy,fontcolor=navy
edge.layout=label.POST_DOM:color=deepskyblue,fontcolor=deepskyblue
edge.layout=label.CONTROLS:color=seagreen,fontcolor=seagreen
edge.display=label.REACHES:+var
edge.layout=label.REACHES:color=darkolivegreen,fontcolor=darkolivegreen

Development

Accessing the GIT Repository

We use the revision control system git to develop Joern. If you want
to participate in development or test the development version, you can
clone the git repository by issuing the following command:

git clone https://github.com/ocotopus-platform/joern.git

If you want to report issues or suggest new features, please do so via
https://github.com/octopus-platform/joern . For fixes, please fork the
repository and issue a pull request.

Build system and IDEs

Joern is a multi-module Gradle project where Java/Groovy sub-projects
are located in the directory ‘projects’, while python projects reside
in the directory ‘python’.

To start hacking on Joern, make sure you can build it using the
supplied build script build.sh. For small modifications, it may be
sufficient to edit the source files using a simple text editor, and
subsequently invoking this script.

For larger changes, please consider using a JAVA IDE such as IntelliJ
or Eclipse. We use both of these IDEs for Joern-development on a
regular basis, so the import should hopefully be possible without
trouble using the corresponding Gradle plugin. IntelliJ typically
comes with a gradle plugin pre-installed, and Eclipse offers a plugin
in its “Marketplace”.

Tutorials

	Code Analysis with joern-tools (Work in progress)
	Importing the Code

	Exploring Database Contents

	Plotting Database Content

	Selecting Functions by Name

	Lookup by Function Content

	Analyzing Function Syntax

	Analyzing Statement Interaction

	Finding Similar Functions with joern-tools

Articles

Why You Should Add Joern to Your Source Code Audit Toolkit (by Kelby Ludwig) [http://www.praetorian.com/blog/why-you-should-add-joern-to-your-source-code-audit-toolkit]

Code Analysis with joern-tools (Work in progress)

This tutorial shows how the command line utilities joern-tools can
be used for code analysis on the shell. These tools have been created
to enable fast programmatic code analysis, in particular to hunt for
bugs and vulnerabilities. Consider them a possible addition to your
GUI-based code browsing tools and not so much as a replacement. That
being said, you may find yourself doing more and more of your code
browsing on the shell with these tools.

This tutorial offers both short and concise commands that get a job
done as well as more lengthly queries that illustrate the inner
workings of the code analysis platform joern. The later have been
provided to enable you to quickly extend joern-tools to suit your
specific needs.

Note: If you end up writing tools that may be useful to others,
please don’t hesitate to send a pull-request to get them included in
joern-tools.

Importing the Code

As an example, we will analyze the VLC media player, a medium sized
code base containing code for both Windows and Linux/BSD. It is
assumed that you have successfully installed joern into the directory
$JOERN as described in Installation. To begin, you can
download and import the code as follows:

cd $JOERN
mkdir tutorial; cd tutorial
wget http://download.videolan.org/pub/videolan/vlc/2.1.4/vlc-2.1.4.tar.xz
tar xfJ vlc-2.1.4.tar.xz
tar zcf vlc-2.1.4.tar.gz vlc-2.1.4/
cd ..

Next, start the joern-server:

./joern-server

Open a new terminal and import the code:

cd $JOERN
joern-import tutorial/vlc-2.1.4.tar.gz

Exploring Database Contents

Inspecting node and edge properties

Fast lookups using the Node Index

Before we discuss function definitions, let’s quickly take a look at
the node index, which you will probably need to make use of in all but
the most basic queries. Instead of walking the graph database from its
root node, you can lookup nodes by their properties. Under the hood,
this index is implemented as an Apache Lucene Index and thus you can
make use of the full Lucene query language to retrieve nodes. Let’s
see some examples.

echo 'g.V().has("type", "File").hasRegex("code", ".*demux.*").code' | joern-lookup vlc-2.1.4.tar.gz

Advantage:

echo 'g.V().has("type", "File").hasRegex("code", ".*demux.*").out().has("type", "Function").code' | joern-lookup vlc-2.1.4.tar.gz

Plotting Database Content

To enable users to familarize themselves with the database contents
quickly, joern-tools offers utilities to retrieve graphs from the
database and visualize them using graphviz.

Retrieve functions by name

echo 'getFunctionsByName("GetAoutBuffer").id' | joern-lookup vlc-2.1.4.tar.gz | joern-location

/home/fabs/targets/vlc-2.1.4/modules/codec/mpeg_audio.c:526:0:19045:19685
/home/fabs/targets/vlc-2.1.4/modules/codec/dts.c:400:0:13847:14459
/home/fabs/targets/vlc-2.1.4/modules/codec/a52.c:381:0:12882:13297

Usage of the shorthand getFunctionsByName. Reference to python-joern.

echo 'getFunctionsByName("GetAoutBuffer").id' | joern-lookup -g | tail -n 1 | joern-plot-ast > foo.dot

Plot abstract syntax tree

Take the first one, use joern-plot-ast to generate .dot-file of AST.

dot -Tsvg foo.dot -o ast.svg; eog ast.svg

[image: ../_images/ast.svg]Plot control flow graph

 echo 'getFunctionsByName("GetAoutBuffer").id' | joern-lookup -g | tail -n 1 | joern-plot-proggraph -cfg > cfg.dot;
dot -Tsvg cfg.dot -o cfg.svg; eog cfg.svg

[image: ../_images/cfg.svg]Show data flow edges

 echo 'getFunctionsByName("GetAoutBuffer").id' | joern-lookup -g | tail -n 1 | joern-plot-proggraph -ddg -cfg > ddgAndCfg.dot;
dot -Tsvg ddgAndCfg.dot -o ddgAndCfg.svg; eog ddgAndCfg.svg

[image: ../_images/ddgAndCfg.svg]Mark nodes of a program slice

echo 'getFunctionsByName("GetAoutBuffer").id' | joern-lookup -g | tail -n 1 | joern-plot-proggraph -ddg -cfg | joern-plot-slice 1856423 'p_buf' > slice.dot;
dot -Tsvg slice.dot -o slice.svg;

[image: ../_images/slice.svg]Note: You may need to exchange the id: 1856423.

Selecting Functions by Name

Lookup functions by name

echo 'type:Function AND name:main' | joern-lookup

Use Wildcards:

echo 'type:Function AND name:*write*' | joern-lookup

Output all fields:

echo 'type:Function AND name:*write*' | joern-lookup -c

Output specific fields:

echo 'type:Function AND name:*write*' | joern-lookup -a name

Shorthand to list all functions:

joern-list-funcs

Shorthand to list all functions matching pattern:

joern-list-funcs -p '*write*

List signatures

echo “getFunctionASTsByName(‘write‘).code” | joern-lookup -g

Lookup by Function Content

Lookup functions by parameters:

echo "queryNodeIndex('type:Parameter AND code:*len*').functions().id" | joern-lookup -g

Shorthand:

echo "getFunctionsByParameter('*len*').id" | joern-lookup -g

From function-ids to locations: joern-location

echo "getFunctionsByParameter('*len*').id" | joern-lookup -g | joern-location

Dumping code to text-files:

echo "getFunctionsByParameter('*len*').id" | joern-lookup -g | joern-location | joern-code > dump.c

Zapping through locations in an editor:

echo "getFunctionsByParameter('*len*').id" | joern-lookup -g | joern-location | tail -n 2 | joern-editor

Need to be in the directory where code was imported or import using full paths.

Lookup functions by callees:

echo "getCallsTo('memcpy').functions().id" | joern-lookup -g

You can also use wildcards here. Of course, joern-location, joern-code
and joern-editor can be used on function ids again to view the code.

List calls expressions:

echo "getCallsTo('memcpy').code" | joern-lookup -g

List arguments:

echo "getCallsTo('memcpy').ithArguments('2').code" | joern-lookup -g

Analyzing Function Syntax

	Plot of AST

	locate sub-trees and traverse to statements

Analyzing Statement Interaction

	some very basic traversals in the data flow graph

Finding Similar Functions with joern-tools

Embed functions in vector space.

	Represents functions by the API symbols used

	Applies TF-IDF weighting

	Dumps data in libsvm format

joern-stream-apiembedder

To allow this to scale to large code bases:

	database requests are chunked to not keep all results in memory at any point in time

	data is streamed onto disk

Determine nearest neighbors.

Get a list of available functions first:

joern-list-funcs

Get id of function by name:

joern-list-funcs -p VLCEyeTVPluginInitialize | awk -F "\t" '{print $2}'

where VLCEyeTVPluginInitialize is the name of the function in this example.

Lookup nearest neighbors.

joern-list-funcs -p VLCEyeTVPluginInitialize | awk -F "\t" '{print $2}' | joern-knn

Show location name or location.

joern-list-funcs -p VLCEyeTVPluginInitialize | awk -F "\t" '{print $2}' | joern-knn

joern-list-funcs -p VLCEyeTVPluginInitialize | awk -F "\t" '{print $2}' | joern-knn | joern-location

Dump code or open in editor.

joern-list-funcs -p VLCEyeTVPluginInitialize | awk -F "\t" '{print $2}' | joern-knn | joern-location | joern-code

joern-list-funcs -p VLCEyeTVPluginInitialize | awk -F "\t" '{print $2}' | joern-knn | joern-location | joern-editor

Index

Octopus Shell

The octopus shell (octopus-shell) provides an interactive interface to access
code already imported into the platform. With octopus-shell you can easily
interact with the graph database using the graph traversal language Gremlin.
The shell has support for maintaining a history and features basic completion of
Gremlin’s default steps as well as the steps defined in the joern specific
language.

To access a database with octopus-shell, you first need to requests a database
connection from the octopus server. The server initializes the database
connection and replies with a port number (the shellport) where you can access
the database. In return, you can use the shell to query the database.

Basic Usage

The octopus shell can list database connections, create new database
connections, and connect to a database. The respective commands are

	octopus-shell list (list database connections)

	octopus-shell create (create database connection)

	octopus-shell connect (connect to database)

All three commands will be explained in the following. You an use
octopus-shell --help to get an overview of all options.

List database connections

By issuing octopus-shell list you get an overview of all available
database connections, e.g:

$ octopus-shell list
6000 libpng-1.6.2.tar.gz None free

meaning that there is a single active database connection for the project
‘libpng-1.6.2.tar.gz’ accessible via port 6000. Moreover, the connection is not
in use, e.g. it is free and we can use octopus-shell connect to use it.

Request a database connections

If no database connection is available, or the available database connections
are not connected to the project you want to work with, you need to create a
new connection. You can do so by issuing
octopus-shell create <database name>. For example:

$ octopus-shell list
$ octopus-shell create libpng-1.6.2.tar.gz
$ octopus-shell list
6000 libpng-1.6.2.tar.gz libpng-1.6.2.tar.gz free

Access database connections

If octopus-shell list contains a free connection to the database of the
project you want to work with, you can use octopus-shell connect to
access the project’s database, e.g.:

$ octopus-shell list
6000 libpng-1.6.2.tar.gz None free
$ octopus-shell connect -q 6000
Connecting to database 'libpng-1.6.2.tar.gz' on port 6000.
 ___ _
 / _ \ ___| |_ ___ _ __ _ _ ___
 | | | |/ __| __/ _ \| '_ \| | | / __|
 | |_| | (__| || (_) | |_) | |_| __ \
 ___/ ___|_____/| .__/ __,_|___/
 |_| Octopus shell

>

Using the shell

If you are connected to a database you can execute arbitrary gremlin
commands, or issue a lookup query. For example, to find all functions
with a return value of type int you can use the following
query:

 ___ _
 / _ \ ___| |_ ___ _ __ _ _ ___
 | | | |/ __| __/ _ \| '_ \| | | / __|
 | |_| | (__| || (_) | |_) | |_| __ \
 ___/ ___|_____/| .__/ __,_|___/
 |_| Octopus shell

> g.V().has("type", "Function").out("IS_FUNCTION_OF_AST").out("IS_AST_PARENT").has("type", "ReturnType").has("code", "int")
v[4632720]
v[2457632]
v[3604656]
...
>

Developing custom steps

When developing new steps, it is recommended to use a small codebase or,
even better, a handcrafted set of function where it is easy to verify
the correctness. Usually, you need to play around a bit. Once your step
works as intended, you can place it in a file and reload it everytime you need
it.

Let’s continue with the previous example. Travering from a function to its
return type is a recurring problem. Therefore, we should take the time and
write a step for this:

> addStep("functionToReturnType", { delegate.out("IS_FUNCTION_OF_AST").out("IS_AST_PARENT").has("type", "ReturnType") })
> g.V().has("type", "Function").functionToReturnType().has("code", "int").next(3)
v[4632720]
v[2457632]
v[3604656]
>

Another scenario is to filter functions by its return type. Again, we should
write a step.

> addStep("hasReturnType", { types -> delegate.as("function").functionToReturnType().has("code", P.within(types)).select("function") })
> g.V().has("type", "Function").hasReturnType("int").count()
61
> g.V().has("type", "Function").hasReturnType("size_t").count()
1
> g.V().has("type", "Function").hasReturnType("int", "size_t").count()
62
> g.V().has("type", "Function").hasReturnType("size_t").values("code")
png_safecat
> g.V().has("type", "Function").hasReturnType("size_t").values("type")
Function

This time, we defined a step with arguments: the step hasReturnType
takes a list of type names and returns only functions that match these return
types. Notice that, the step hasReturnType uses the step
functionToReturnType defined earlier.

Loading steps

Of course, you can save your steps into a file and load it every time you
use a fresh database connection. You can do so by typing
!reload(<stepsdir>) in octopus-shell, where stepsdir contains
your step file(s).

Performance Tuning

Optimizing Code Importing

Joern uses the Neo4J Batch Inserter for code importing (see Chapter 35
of the Neo4J documentation [http://docs.neo4j.org/chunked/stable/batchinsert.html]). Therefore,
the performance you will experience mainly depends on the amount of
heap memory you can make available for the importer and
how you assign it to the different caches used by the Neo4J Batch
Inserter. You can find a detailed discussion of this topic at
https://github.com/jexp/batch-import .

By default, Joern will use a configuration based on the maximum size
of the Java heap. For sizes below 4GB, the following configuration is
used:

cache_type = none
use_memory_mapped_buffers = true
neostore.nodestore.db.mapped_memory = 200M
neostore.relationshipstore.db.mapped_memory = 2G
neostore.propertystore.db.mapped_memory = 200M
neostore.propertystore.db.strings.mapped_memory = 200M
neostore.propertystore.db.index.keys.mapped_memory = 5M
neostore.propertystore.db.index.mapped_memory = 5M

The following configuration is used for heap-sizes larger than 4GB:

cache_type = none
use_memory_mapped_buffers = true
neostore.nodestore.db.mapped_memory = 1G
neostore.relationshipstore.db.mapped_memory = 3G
neostore.propertystore.db.mapped_memory = 1G
neostore.propertystore.db.strings.mapped_memory = 500M
neostore.propertystore.db.index.keys.mapped_memory = 5M
neostore.propertystore.db.index.mapped_memory = 5M

The Neo4J Batch Inserter configuration is currently not
exported. If you are running Joern on a machine where these values
are too low, you can adjust the values in
src/neo4j/batchinserter/ConfigurationGenerator.java.

For the argumentTainter, the same default configurations are
used. The corresponding values reside in
src/neo4j/readWriteDb/ConfigurationGenerator.java.

Optimizing Traversal Speed

To experience acceptable performance, it is crucial to configure your
Neo4J server correctly. To achieve this, it is highly recommended to
review Chapter 22 of the Neo4J documentation on Configuration and
Performance [http://docs.neo4j.org/chunked/stable/configuration.html]. In
particular, the following settings are important to obtain good
performance.

Size of the Java heap. Make sure the maximum size of the java heap
is high enough to benefit from the amount of memory in your
machine. One possibility to ensure this, is to add the -Xmx$SIZEg
flag to the variable JAVA_OPTS in $Neo4JDir/bin/neo4j where
$Neo4JDir is the directory of the Neo4J installation. You can also
configure the maximum heap size globally by appending the -Xmxx
flag to the environment variable _JAVA_OPTIONS.

Maximum number of open file descriptors. If, when starting the
Neo4J server, you see the message

WARNING: Max 1024 open files allowed, minimum of 40 000 recommended.

you need to raise the maximum number of open file
descriptors for the user running Neo4J (see the Neo4J Linux
Performance Guide [http://docs.neo4j.org/chunked/stable/linux-performance-guide.html]).

Memory Mapped I/O Settings. Performance of graph database
traversals increases significantly when large parts of the graph
database can be kept in RAM and do not have to be loaded from disk
(see
http://docs.neo4j.org/chunked/stable/configuration-io-examples.html
). For example, for a machine with 8GB RAM the following
neo4j.properties configuration has been tested to work well:

conf/neo4j.conf
use_memory_mapped_buffers=true
cache_type=soft
neostore.nodestore.db.mapped_memory=500M
neostore.relationshipstore.db.mapped_memory=4G
neostore.propertystore.db.mapped_memory=1G
neostore.propertystore.db.strings.mapped_memory=1300M
neostore.propertystore.db.arrays.mapped_memory=130M
neostore.propertystore.db.index.keys.mapped_memory=200M
neostore.propertystore.db.index.mapped_memory=200M
keep_logical_logs=true

Automatically Killing Runaway Queries

Inefficient graph traversals can consume unbounded amounts of
resources. Currently, Neo4j does not support killing active queries,
instead it offers an execution guard that will kill queries running
beyond a specified amount of time. It’s recommended you enable it by
adding the following to neo4j.properties:

execution_guard_enabled=true

And then specify the timeout (in millseconds) in
neo4j-server.properties as below:

org.neo4j.server.webserver.limit.executiontime=60000

 _static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Welcome to joern's documentation!

 		Installation

 		System Requirements and Dependencies

 		Testing the server

 		Testing client scripts

 		Parsing and Importing Code

 		Importing code

 		Parsing code without importing

 		Accessing Code via Python

 		Basic Usage

 		Chunking Traversals

 		Database Overview

 		Code Property Graphs

 		Global Code Structure

 		Querying the Database

 		Gremlin Basics

 		Start Node Selection

 		Traversing Syntax Trees

 		Syntax-Only Descriptions

 		Traversing the Symbol Graph

 		Taint-Style Descriptions

 		Joern-tools

 		joern-slice

 		SYNOPSIS

 		DESCRIPTION

 		joern-apiembedder

 		SYNOPSIS

 		DESCRIPTION

 		joern-knn

 		SYNOPSIS

 		DESCRIPTION

 		OPTIONS

 		joern-plot-proggraph

 		SYNOPSIS

 		DESCRIPTION

 		OPTIONS

 		PLOT CONFIGURATION

 		Development

 		Accessing the GIT Repository

 		Build system and IDEs

 		Tutorials

 		Code Analysis with joern-tools (Work in progress)

 		Importing the Code

 		Exploring Database Contents

 		Plotting Database Content

 		Selecting Functions by Name

 		Lookup by Function Content

 		Analyzing Function Syntax

 		Analyzing Statement Interaction

 		Finding Similar Functions with joern-tools

 		Articles

_static/down-pressed.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/up-pressed.png

